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Abstract

Probability theory can be modified in essentially one way while

maintaining consistency with the basic Bayesian framework. This

modification results in copies of standard probability theory for real,

complex or quaternion probabilities. These copies, in turn, allow one

to derive quantum theory while restoring standard probability the-

ory in the classical limit. The argument leading to these three copies

constrain physical theories in the same sense that Cox’s original ar-

guments constrain alternatives to standard probability theory. This

sequence is presented in some detail with emphasis on questions be-

yond basic quantum theory where new insights are needed.

1 Introduction

If it weren’t for the weight of history, it would seem natural to take quantum
mechanical phenomena as an indication that something has gone wrong with
probability theory and to attempt to explain such phenomena by modifying
probability theory itself, rather than by invoking quantum mechanics. It is
actually easy to take this point of view because probability theory is so tightly
constrained by Cox’s Bayesian arguments[1] that there is only one plausible
try. Trying this anyway[2, 3, 4, 5], one finds that Cox’s arguments work even
without the assumption that probabilities are real and non–negative and one
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obtains “exotic” copies of standard probability theory where the probabilities
may belong to any real associative algebra with unit. With probability theory
modified, there is no need for the usual “wave-particle duality” and one is
free to assume, for example, that a particle in R3 is somewhere in R3 at
each time. Introducing such “state spaces” and assuming that probabilities
have a square norm, exotic probabilities acquire the power to predict real
non-negative frequencies and are limited to three algebras: reals, complex
numbers and quaternions. Given this framework, complex probabilities with
state spaces R3 or R4 lead to the standard quantum theory in complete
detail including the Schrodinger equation and “mixed states.” Quaternionic
probabilities lead, on the other hand, to the Dirac theory[6, 7]. Although one
might expect such theories to be ruled out by Bell’s arguments, modifying
probability theory turns out to evade this and similar restrictions[3]. Because
of the simple nature of the state space axioms and the Bayesian nature of the
exotic probabilities, the familiar semi–paradoxical measurement and observer
questions from quantum theory do not arise[5]. One has a theory which is
quite substantially simpler than quantum mechanics both conceptually and
mathematically.

Although predictions within state spaces like R3 and R4 agree with stan-
dard quantum mechanics, Srinivasan has realized that one should expect even
more interesting results in field theory because exotic probability theory can-
not produce the apparent divergences which are so common in quantum field
theory. Indeed, he has shown that with his quaternionic probability ver-
sion of canonical quantization, he gets the correct result for the Lamb shift
without any renormalization procedure[8].

This paper is intended as a review of the basic results from references 2-5
with more detail than is practical in letter sized papers, as a starting point
for someone interested in this general subject and as an exposition of unan-
swered questions where further research is needed. The idea that probability
theory might be altered in some way goes back at least to Dirac[9]. For a
history of this idea, the review by Muckenheim et al.[10] is a good starting
point. Related ideas can be found papers by Srinivasan and Sudarshan[6,
7, 8], Gudder[11], Feynman[12], Tikochinsky[13], Frohner[14], Caticha[15],
Steinberg[16], Belinskii[17], Miller[18], Muckenheim[19], Khrennikov[20] and
Pitowsky[21]. This work is very influenced by the Bayesian view of proba-
bility theory due to Ed Jaynes[22, 23, 24, 25].
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2 Cox arguments

In the Bayesian view of probability theory, probabilities begin as real non-
negative numbers assigned to pairs (a, b) of arbitrary propositions. These
numbers are meant to indicate, in some sense to be defined, how likely it
is that proposition b is true given that proposition a is known. Given this
setup, Cox argued[1] that if such an assignment of numbers is to be useful as a
likelihood, it should satisfy a few plausible conditions. He then demonstrates
(it is not a proof for reasons which will be clear below) that these conditions
lead unambiguously to the standard Bayesian presentation of probability
theory. The basic plan is to simply follow Cox’s work while dropping the
assumption that probabilities are real and non-negative.

Before beginning, there are a couple of technical points which might cause
confusion. Cox[1] and Jaynes[25] discuss probability theory without any re-
striction on propositions. The idea is that probability theory is meant to be
“the logic of science” and is meant to be treated slightly informally in the
same sense that ordinary logic is treated slightly informally in mathematics.
However, for definiteness, and since we will introduce several copies of prob-
ability theory, we work in a distributive lattice. The other technical point
is that Cox, Jaynes and my previous papers work in a Boolean lattice as
opposed to a distributive lattice. It is easier to deal with a plain distributive
lattice and this makes no difference for the results in references 2-5.

Consider a set P and a distributive lattice L with “propositions” a, b, c ∈
L with minimum element 0 ∈ L and maximal element 1 ∈ L. For a function
→: L × L → P to be a useful measure of “likelihood,” we expect, following
Cox[1], that (a → b) and (a ∧ b → c) should determine (a → b ∧ c) and
denote the implied function by ∗ : P ×P → P . Similarly, if b∧c = 0, we also
expect that (a → b) and (a → c) should determine (a → b ∧ c) and denote
this function by + : P × P → P . Mathematically speaking, Cox’s point is
that the structure of L has implications for ∗ and +. For example, for any
a, b, c, d ∈ L, we have

(a → b ∧ c ∧ d) = (a → b) ∗ (a ∧ b → c ∧ d) = (a → b) ∗ [(a ∧ b → c) ∗ (a ∧ b ∧ c → d)]
(1)

and using the associativity of ∧,

(a → b ∧ c ∧ d) = [(a → b) ∗ (a ∧ b → c)] ∗ (a ∧ b ∧ c → d). (2)
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Letting x = (a → b), y = (a ∧ b → c) and z = (a ∧ b ∧ c → d), we have

x ∗ (y ∗ z) = (x ∗ y) ∗ z (3)

for all such triples (x, y, z). Following Cox, we further assume that ∗ is
associative in general.

Similarly, suppose that we have a, b, c ∈ L with b ∧ c = 0. Then (a →
b ∨ c) = (a → b) + (a → c) = (a → c) + (a → b). We then plausibly assume
that + is commutative in general.

One can easily complete this picture checking properties of L to see what
is correspondingly expected in P .

Property of L Expected property of P
∧ is associative ∗ is associative
∨ is associative + is associative
∧ is commutative ——
∨ is cummutative + is commutative
∧ distributes over ∨ ∗ distributes both ways over +
∨ distributes over ∧ ——
0 is the minimum P has an additive identity “0”
1 is the maximum P has a two–sided multiplicative identity “1”

Although the usual [0, 1] ⊂ R probabilities satisfy these conditions, they
are only one possibility. At this stage, any ring will do, even a ring with
non-commutative multiplication like the quaternions. Actually, the fact that
we have to explain interference effects strongly suggests that we will need
probabilities with an additive inverse. Plausibly also requiring scaling of
probabilities by real numbers, we assume, at this stage, that the probabilities
of interest are real associative algebras with unit. Further restrictions are to
come in section 3.

3 Predicting frequencies

The exotic probabilities of the last section seem exotic mainly because we
are immediately familiar with what, say, P (b|a) = 0.25 means in terms of an
experiment. On the other hand, what is the predictive meaning of something
like (a → b) = 2+3i? To answer this, it is helpful to realize that this problem
already exists even in standard probability theory. There is nothing in prob-
ability theory as such that tells us that probability P (b|a) = 0.25 means 25%
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should be expected in the corresponding frequency. This must be deduced
from additional assumptions. In the standard probability case, one consid-
ers N copies of the situation where a was known. One then observes that
the probability that b is true n/N times peaks at 0.25, and for any interval
containing 0.25, the probability to be outside the interval can be reduced
as much as one wants by increasing N . Roughly speaking, the frequency
meaning of standard probabilities is fixed by the additional assumption that
“probability zero propositions never happen.” It may help to notice that, as
Jaynes points out[25], standard probability theory works equally well on the
interval [1,∞] rather than [0, 1]. In this case, probability 4.0 would predict
frequency 0.25 and one would be assuming that propositions with probability
∞ never happen.

In the case of exotics, we cannot proceed quite as simply as in standard
probability theory since, as will become clear, zero probability propositions
may sometimes be true anyway. However, we can progress by assuming that
L contains a special subspace for which the standard arguments will hold.
Given P–probability (L,→), let X be a measure space and suppose that
the free distributive lattice on X × R is a sublattice of L [26]. We’ll refer
to the second component of X × R as “time” and will often denote it as a
subscript. For A ⊂ X, At denotes

∨

a∈A at. We will see below that frequency
predictions follow if we assume that X has properties that one would expect
of “the state of the system.” In particular, we assume that for any time t,
xt∧yt = 0 for any x, y ∈ X with x 6= y, meaning that “the system can’t be in
two different states at the same time.” Please note the clash of terminology
with standard quantum theory where “state space” means a Hilbert space
and not just a measure space.

Given a state space X, and any fixed time t, we can relate probabilities to
functions from X to P . For a, b, c ∈ L, let “wave functions” Ψa→b : X → P
be defined by

(a → b ∧ σt) =

∫

σ

Ψa→b (4)

for all measurable σ ⊂ X. Such functions are therefore related by

Ψa→b∧c = (a → b) Ψa∧b→c (5)

in general and

Ψa→b∨c = Ψa→b + Ψa→c (6)
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if b ∧ c = 0.
In order to get real non-negative numbers from probabilities, we take P

to have a square norm ‖ ‖: P → R0,+ satisfying ‖ p q ‖=‖ p ‖ ‖ q ‖ for
p, q ∈ P . Given this, we will show that, under certain conditions,

Probt(b|a) =

∫

X
‖ Ψt

a→b ‖
∫

X
‖ Ψt

a→1 ‖
(7)

is a probability in the ordinary sense. When it doesn’t cause confusion, we
will suppress the function name inside integrals as a notational convenience.
We may, for example, write

Probt(b|a) =

∫

X
‖ a → b ∧ xt ‖

∫

X
‖ a → 1 ∧ xt ‖

. (8)

Note that probabilities like (a → b∧ c∧ xt) are typically zero and, of course,
(a → xt) isn’t equal to Ψt

a(x).
To derive properties of Probt, note that

Probt(b ∧ c|a) =

∫

X
‖ a → b ∧ c ∧ xt ‖
∫

X
‖ a → xt ‖

(9)

is equal to
∫

X
‖ a → b ‖ ‖ a ∧ b → c ∧ xt ‖

∫

X
‖ a → xt ‖

∗

∫

X
‖ a ∧ b → xt ‖

∫

X
‖ a ∧ b → xt ‖

(10)

and, rearranging and using ‖ a → b ‖ ‖ a∧ b → xt ‖=‖ a → b∧xt ‖, we have

Probt(b ∧ c|a) = Probt(b|a) Probt(c|a ∧ b) (11)

as desired. If we also knew that for b ∧ c = 0,

Probt(b ∨ c|a) = Probt(b|a) + Probt(c|a) (12)

then we would have a complete standard probability theory and a frequency
meaning would follow as in the standard argument. However, (12) is true if
and only if

∫

X

‖ Ψt
a→b + Ψt

a→c ‖=

∫

X

‖ Ψt
a→b ‖ +

∫

X

‖ Ψt
a→c ‖ (13)
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which, in a Hilbert space setting, is equivalent to requiring Ψt
a→b and Ψt

a→c to
be orthogonal. Thus, we’ve concluded that we can predict frequencies, but
only for sublattices of L for which (12) holds. This includes the sublattice
X at any fixed time and the sublattice of propositions associated with a
Hermitian operator in the Hilbert space case.

For example, suppose that we have an orthogonal set of functions {φ1, ..., φn}
in the Hilbert space L2(X) and suppose that L contains the sublattice B =
{b1, b2, . . . , bn} where bi is the proposition “φi is the best description of the
system at time t.” B is a sublattice and (12) is satisfied because < φi, φj > is
zero for i 6= j and so Probt on the sublattice B is therefore a probability the-
ory in the ordinary sense and, for example Probt(bj |

∨n
i=1 bi) is the expected

frequency that φj is the best description of the system at time t assuming
that one of the φ1, φ2, . . . φn is optimal.

As another example, consider how we would describe a Stern–Gerlach
experiment with quaternion probabilities and state space X = R3. At any
time t while the particle is heading towards the magnet, Xt is a sublattice of
L and Probt is a standard probability theory and predicts how often various
subsets of X are occupied. At a time t′ when the particle has gone through
the magnet and either gone up or down, Xt′ is also a sublattice and Probt′ is
also standard and predicts the results of the experiment. However, although
Xt ∪ Xt′ is a a sublattice of L, we cannot conclude that either Probt or
Probt′ are standard probabilities because interference terms may prevent (12)
from being satisfied. This is why exotic probabilities aren’t eliminated by
Bell’s inequalities (see section 8). You can also see that this implies that the
Stern–Gerlach experiment is not a dynamical system. If there was a function
f : X → X such that a particle at xt always arrives at f(x)t′ , probabilities on
Xt∪Xt′ would be determined by Probt and f . In this sense the Stern–Gerlach
system is realistic but not deterministic.

Thus, we have found that exotic probabilities can indeed acquire predic-
tive power provided we introduce a “state space” within L and a square norm
on P . Since the square norm property ‖ p q ‖=‖ p ‖ ‖ q ‖ is crucial, we
conclude that probabilities must be real associative algebras with a square
norm. There are, however, only are only three such algebras: the reals, the
complex numbers and the quaternions[27]. This means that particles may
only be spin 0 or spin 1/2. Since (12) is only prevented by “interference
terms” we see that, in this sense, “standard probability theory is restored in
the classical limit.”

7



4 More about state spaces

As pointed out in reference 4, modifying probability theory means that we
are free to simply assume that if a particle arrives at a point xt′ at a detecting
screen in a two slit experiment, the particle was therefore somewhere in R3

at any previous t ≤ t′. In general, we assume that

xt′ = xt′ ∧ Xt (14)

for all x ∈ X, t ≤ t′. This has immediate implications. For t ≤ t′ ≤ t′′,

(Xt → Xt′′) = (Xt → Xt′ ∧ Xt′′) = (Xt → Xt′)(Xt′ → Xt′′) (15)

and if we also assume that probabilities are time invariant in the sense that
(At → Bt′) = (At+τ → Bt′+τ ) for any A, B ⊂ X, t, t′, τ ∈ R, then (Xt →
Xt′) = eλ(t′−t) for some λ ∈ P . This implies that Ψt′

Xt
(x) = eλ(t′−t)φ(x)

for time independent φ : x 7→
∫

σ
(Xt′ → σt′). For those used to quantum

mechanics, this may seem puzzling because, after assuming very little, we
concluded that “the system is in an energy eigenstate.” What if the system
is, in fact in some other state? If this question occurs to you, remember
that an exotic probability like (Xt → At′) is only the best estimate that
At′ is true given that Xt is known. If one knows some additional facts F
about the system, one should instead calculate (Xt ∧ F → At′). Thus, our
wave functions only represent what one knows about a system and can’t be
interpreted as “the state of the system” in any reasonable sense. Different
observers will have different knowledge about a system and they may also
describe a single system with different wave functions. This means that if
an observer does not know all the relevant facts about a system, their wave
functions may give incorrect predictions. Of course, this is not a failure of
exotic probability theory any more than it is a failure of ordinary probability
theory when the usual analysis of a die fails in the case of loaded die. In
both cases, the theories are successful to the extent that relevant facts are
known. From the Bayesian view, the particular result above means that if
one knows only that the system was somewhere in state space at time t,
then the best description of the system at any later time is one of the energy
eigenfunctions.

One last assumption completes what one intuitively means by a “state
space.” Intuitively, if one knows the “state” xt at time t ∈ R, then any
previous knowledge should be irrelevant. In this sense, it is natural to assume

(At ∧ xt′ → Bt′′) = (xt′ → Bt′′). (16)
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for any t ≤ t′ ≤ t′′, A, B ⊂ X, x ∈ X. This assumption also has immediate
consequences. For A, B ⊂ X, letting subscripts indicate time ordering and
using Ψt

a→b(x) = Ψt
a(x) (a ∧ xt → b),

(Ao → Bn) =

∫

x∈X

Ψ1
Ao

(x) (Ao ∧ x1 → Bn) =

∫

x1∈X

(Ao → x1)(x1 → Bn)

(17)

and, repeating the same argument,

(Ao → Bn) =

∫

x1,x2,...,xn−1

(Ao → x1)(x1 → x2) . . . (xn−1 → Bn) (18)

for any sequence of intermediate times t1, t2, . . . , tn−1. We can refer to such an
expression as a “path integral.” Note that this expression together with the
definition of Prob means that “paths interfere if they end at the same point
in X.” This is the exotic probability version of the “which path” principle
of quantum mechanics.

5 Definitions

Before continuing on to physics, let’s collect the definitions so far and estab-
lish some terminology. For the rest of the paper, we assume lattices to be
distributive and to have minimum and maximum elements denoted “0” and
“1” respectively. By a “measure space,” we always mean a measure space
with a finite real non-negative measure.

Fix P = R, C or H. A P–probability is a lattice L together with a
function →: L × L → P satisfying

(a → b ∧ c) = (a → b) (a ∧ b → c) (19)

for all a, b, c ∈ L and satisfying

(a → b ∨ c) = (a → b) + (a → c). (20)

for all a, b, c ∈ L with b ∧ c = 0.
Here are a few simple examples. Let L be the lattice {0, 1} and let

(a → b) be 0 if b is the minimum and 1 if b is the maximum. This is a
P–probability. Given a lattice L, let φ : L → P be some function satisfying
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φ(a ∧ b) = φ(a)φ(b) in general and φ(a ∨ b) = φ(a) + φ(b) if a ∧ b = 0.
Then (a → b) = φ(b) makes (L,→) into a P–probability. Let L be a totally
ordered lattice and let (a → b) be 1 if a ≤ b and 0 otherwise. This is also
a P–probability. Given a P–probability (L,→) and a sublattice M of L, let
l be an element of L. We can then define a new P–probability (M,→l) by
letting (a →l b) = (a ∧ l → b) for a, b ∈ M .

Following standard probability theory, we say that propositions a, b ∈ L
are independent if (a ∧ q → b) = (q → b) for all q ∈ L and this implies
(q → a ∧ b) = (q → a)(q → b) as usual. We say that subsets A, B of L are
independent if a and b are independent for all a ∈ A and b ∈ B.

Given a P–probability (L,→), we can define the product of independent
sublattices M and N of L. Letting (M × N,→×) be defined by

(m, n) →× (m′, n′) = (m → m′)(n → n′). (21)

This defines a P–probability, even if P is not commutative.
Let X be a measure space and let FX be the free lattice on X×R subject

to

xt ∧ yt = 0 (22)

for all x, y ∈ X, x 6= y, t ∈ R and

xt′ = xt′ ∧ Xt (23)

for x ∈ X and times t ≤ t′. A P–probability (L,→) is said to “have a state
space X” if FX is a sublattice of L and if

(At ∧ xt′ → Bt′′) = (xt′ → Bt′′) (24)

for all times t ≤ t′ ≤ t′′ for all subsets A, B ⊂ X and for all x ∈ X.

6 A simple interferometer

To exercise our ideas so far, let’s analyze the interferometer shown in figure
1 in some detail. Although one is instinctively shy at first, we are free to use
simple language to describe what happens as if the particle was a marble.
Working within a C–probability with state space X = R3, we can say that
a particle hits S1 and either goes on the P1 branch or the P2 branch. After
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Figure 1: A simple interferometer where a particle enters as indicated and
encounters a beam splitter (S1), a mirror (M1 or M2) and a second beam
splitter (S2) ending up either in detector (D1) or (D2).
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hitting either mirror M1 or M2, the particle is on the Q1 or the Q2 branch
respectively. The particle will hit S2 and will end up in either detector D1 or
in detector D2. Experimentally, one surprisingly finds that particles always
end up in D2. Letting “e” informally denote the experimental arrangement,
we would like to calculate (e → D1) and (e → D2). Since Dj implies both
P1 ∨P2 and Q1 ∨Q2, we have (e → Dj) = (e → (P1 ∨P2)∧ (Q1 ∨Q2)∧Dj).
Using P1 ∧ P2 = Q1 ∧ Q2 = 0, we mechanically apply axioms to produce

(e → Dj) =
2

∑

n,m=1

(e → Pn)(e ∧ Pn → Qm)(e ∧ Pn ∧ Qm → Dj). (25)

Since P1 is equivalent to a point in X, previous knowledge is irrelevant and
we have (e ∧ Pn → Qm) = (Pn → Qm). We also clearly want to assume that
the particle can’t hop the rails, in other words we assume that (Pn → Qm)
is zero unless n = m. This causes one of the sums to disappear giving

(e → Dj) =

2
∑

n=1

(e → Pn)(Pn → Qn)(Qn → Dj) (26)

This result is not surprising, but the point to focus on is that the result follows
rigorously from the exotic probability axioms with natural assumptions given
the marble–like picture of what is happening.

To proceed further, we have to define what happens at the mirrors and
the beam splitters. Naturally, in either this case or in standard quantum
theory, what one means by “a mirror” and “a beam splitter” has to be put
in by hand. In the ideal case, what one means by a “mirror” is that complex
probabilities of particle bouncing off of it pick up a factor of i. A good
experimentalist would naturally test this assumption in other measurements.
Similarly, the beam splitters multiply probabilities by a factor of i when there
is a “bounce.” Thus, (e → P2) = i ∗ (e → P1), (Q1 → D2) = i ∗ (Q1 → D1),
(Q2 → D1) = i ∗ (Q2 → D2), and (P1 → Q1) = (P2 → Q2) and so (e →
D1) = 0 as expected.

Suppose now that the interferometer is such that a device could be at-
tached to M1 such that it registered “hit” or “nohit” depending on whether
the particle struck M1 or not. Experimentally the results are different and
about half the particles go into D1. In quantum theory, one says that this
is due to the “which path” principle. The two paths ending in D1 no longer
interfere because “you can tell which path was taken.” You can see that this
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result also follows mechanically with exotic probabilities. In the described
situation, R3 is evidently not a sufficient state space and one should use at
least R3 × {hit, nohit}. In this case, one can explicitly calculate that the
interference is lost because two paths ending in D1 no longer end at the same
point in the state space. One can also calculate that if the device detecting
whether M1 is hit works so poorly that {hit, nohit} are independent of Q1

and Q2, then the interference effect is entirely restored[2].
Note the difference with standard quantum theory. Quantum mechanics

has no problem with this interferometer in the sense that the wave equation
can be solved for any desired input wave packet. Of course, no one wants to
do this, especially to get such simple results. This explains the popularity
of the “which path” principle even though it is not completely clear what
it means or how it follows from the fundamental wave equation. This is
analogous to doing probability theory knowing the diffusion equation but not
knowing Kolmogorov’s axioms. In exotic probabilities, on the other hand,
both a rigorous version of the “which path” principle and any wave equation
are consequences of the underlying exotic probability theory.

7 Exponential Decay

The interferometer from the previous section suggests that exotics may be
particularly helpful in situations where one wants predictions which are in-
dependent of details of initial wave functions and potentials. “Exponential
decay” provides simple examples of such situations and also brings up one of
the lesser known mysteries of quantum theory. Consider a system such as a
Co60 nucleus or a muon which may decay irreversibly. Given such a system,
if the probability for a decay within a time interval t only depends on t and
not on the history of the system, then a familiar argument in probability the-
ory implies that the probability density for decay is exponential. Quantum
mechanics, however, does not generally predict this[29] and so it would seem
that for such non–exponential systems, the assumption that they decay in-
dependent of their history is not correct. As with other paradoxes[5], we can
resolve this by realizing that the physical assumptions are correct; the prob-
lem is caused by probability theory itself. Applying the physical assumptions
to exotic probability theory instead, we suppose that in a P–probability with
state space X, (At → Bt′) = (At+τ → Bt′+τ ) for all t, t′, τ ∈ R. Suppose also
that X contains a subset α whose complement β is a “trap” in the sense that

13



βt implies βt′ for any t ≤ t′. This means that αt′ implies αt for any t ≤ t′

also. With arguments similar to those in section 4, we find (α0 → αt) = eλt,
(β0 → βt) = 1, (α0 → βt) = a (1 − eλt), and (β0 → αt) = 0 for some
λ ∈ P and a ∈ R. Although the exotic probabilities are simple exponentials,
this isn’t preserved in the predicted frequencies. The ordinary probability to
remain free for time t is

Prob(αt|α0) =

∫

α
‖ α0 → xt ‖

∫

α
‖ α0 → xt ‖ +

∫

β
‖ α0 → xt ‖

(27)

and, using
∫

α
‖ α0 → xt ‖=‖ α0 → αt ‖

∫

α
‖ αt → xt ‖ and

∫

β
‖ α0 →

xt ‖=‖ α0 → βt ‖
∫

β
‖ α0 ∧ βt → xt ‖, we have

Prob(αt|α0) =
1

1 + k(t) ‖ e−λt − 1 ‖
(28)

where

k(t) = a2

∫

β
‖ α0 ∧ βt → xt ‖
∫

α
‖ αt → xt ‖

. (29)

For small t and assuming that λ is real an negative, Prob(αt|α0) will decrease
more slowly than 1 − 2λt. If we also know that α0 and xt ∈ βt can be taken
to be independent for sufficiently large t, then we say that the system is
“forgetful.” In this case, k(t) is asymptotically constant and Prob(αt|α0)
will be exponential for large times. Such deviations from exponential decay
have only recently been observed experimentally[30].

The examples of the last two sections show the usefulness of applying
exotic probability theory directly as opposed to solving a PDE. This sort of
reasoning is mostly missing in standard quantum theory.

8 Bell’s inequalities

Bell’s well known analysis of the spin version of the Einstein–Podolsky–Rosen
experiment[28] is almost universally summarized as showing that local real-
istic theories are incompatible with the predictions of quantum mechanics
and are therefore wrong. One might then expect that exotic probabilities
would be ruled out by Bell because they are “realistic” in the state space
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sense. Bell’s analysis, however, does not follow once we modify probability
theory. To see the problem, you only have to notice that the first step in
Bell’s analysis assumes that P (Mt′ |e) = P (Mt′ ∧ Λt|e) and

P (Mt′ ∧ Λt|e) =

∫

λ∈Λ

P (Mt′ ∧ λt|e) =

∫

λ∈Λ

P (λt|e)P (Mt′ |e ∧ λt) (30)

for initial setup e, final measurement Mt′ and assuming that the final results
are determined by some “hidden variable” λ ∈ Λ at some time t during the
flight from decay to detectors. As pointed out in section 3, equation 33 fails
to hold in general due to “interference terms”[3]. In fact, Bell has shown
exactly that if one wants local realism one must modify probability theory.
Ironically, the standard summary of his results gives the opposite impression.

Over the years, there have been more than twenty variations on Bell’s
result each with a different experimental arrangement and each concluding
that local realistic theories are impossible. Bell’s result and two of the more
well known variations are considered in reference 3 in some detail and are
shown not to eliminate exotic probabilities. There has also been an increasing
tendency to refer to Bell and similar results as “non–local” effects because
they cannot be explained by local correlations[3]. The point is, however, that
if one has the wrong probability theory, one may also have the wrong notion
of what is just a correlation. Within exotic probability theory, we expect that
Bell’s results are just correlations in the new probability theory. It’s helpful
to think of a classical experiment where one cuts a penny into a heads half
and a tails half and mails one half penny to house A and the other half to
house B. The results at the two houses are correlated, but nothing travels
between them to insure the proper results. One therefore expects that there
is nothing that one can do at house A to affect the fact that, at house B,
one will find heads 50% of the time and tails 50% of the time. The same
holds true in the EPR experiment. The results at one end of the experiment
are 50% spin up and 50% spin down independent of the magnet orientation
nothing that happens on the other side can affect this.
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9 Time evolution

Given some initial knowledge such as At with A ⊂ X, the exotic probability
to arrive at some B ⊂ X at some later time t′′ is given by

(At → Bt′′) =

∫

x∈X

(At → xt′)(xt′ → Bt′′) (31)

for any time t′ with t ≤ t′ ≤ t′′. This is called the Chapman–Kolmogorov
equation in the probability literature. In the complex case with state space
Rd, one can either follow reference 4 or Risken[31] to conclude that for small
τ ∈ R and small z ∈ X, (xt → (x + z)t+τ ) is given by

1

(2πτ)d/2
√

det(ν)
exp(−τ [

1

2
(
zj

τ
− νj)ν

−1
jk (

zk

τ
− νk) + νo]) (32)

where νo, νj and νjk are moments of the time derivative of ω(x, z, τ) ≡ (xt →
(x + z)t+τ ) defined by complex functions νo(x) ≡

∫

X
ωτ (x, z, 0), νj(x) ≡

∫

X
ωτ (x, z, 0)zj , νjk(x) ≡

∫

X
ωτ (x, z, 0)zjzk. This is a central–limit–theorem–

like phenomena where the details of the unknown function (xt → (x + z)t+τ )
are smoothed over and only a dependence on it’s lowest moments survives.
Identifying zj/τ as the velocity, equation 35 is equivalent, for example, to
the Schrodinger equation in R3 identifying νo = −ieAo, νj = e

m
Aj and

νjk = (i/m)δjk. Similarly, quaternion probabilities in result in the Dirac
equation[6, 7]. These arguments need to be made into proofs, but there is
also a mystery as to why only parts of the available moments seem to be
used by nature. Why, for instance, must νj be purely real in R3?

10 Comparison with quantum theory

In standard quantum theory, the state of the system is a ray in a Hilbert
space. To define such a theory one must define a Hilbert space and a complete
set of mutually commuting self-adjoint operators to serve as observables. In
addition, one chooses a Hamiltonian and labels the states in the Hilbert
space by irreducible representations of the Hamiltonian’s symmetry group.
For Hamiltonians invariant under the Lorentz group, states have spin and
four–momenta. Time evolution is a one parameter semigroup given by the
Hamiltonian operator. If “mixed states” occur, they must be described by
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density matrices. Quite a bit of functional analysis must be understood to
define this precisely.

In an exotic probability theory, on the other hand, the state of the system
is a point in a measure space X. To define the theory, one simply chooses
X and picks R, C or H. Particles are not thought of as having momentum
or spin, or any other internal structure. The only thing that a particle can
do is to be somewhere. This is all that is required, however, because experi-
ments which measure things like momentum and spin are always ultimately
measuring position. Wave functions have the same status as densities do in
Bayesian theory. People with different knowledge about a system will, in
general, use different wave functions. Those who have more knowledge can
expect better predictions. Situations requiring “mixed states” in quantum
theory are described by the same exotic theory without modification[2] and,
similarly, there is no sensible concept of “being in a mixed state.” Rather
than choosing a Hamiltonian, one notes that wave functions are propagated
in time by the unknown (xt → x′

t′). In typical state spaces this propagation
obeys a PDE which depends only upon the lowest moments of (xt → x′

t′)
and these moments are identified with the vector potential and metric ten-
sor. The relevant moments can either be measured experimentally with test
particles or computed with some external theory like Maxwell’s equations.
One does not assume Lorentz or gauge invariance to get these results.

11 Implications for the rest of physics and

open questions

Physical theories are thought to be quantum theories in only in a somewhat
general sense. The successful predictions of quantum mechanics, must, of
course, be reproduced, but this is not taken to mean that any theory must
literally satisfy the axioms of quantum theory. There is, however, an inde-
pendent reason why physical theories must be precisely exotic probability
theories. The results of section two and three indicate that any theory which
assigns likelihoods to pairs of propositions from a distributive lattice must
exactly be an exotic probability theory or must violate one of our two Cox
conditions or must fail to reduce to standard probability theory when pre-
dicting frequencies. Physical theories are constrained by the results here just
as alternatives to standard probability theory are constrained by Cox’s origi-
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nal arguments. The implications of this raise many questions about how this
should be done for the rest of physics.

In the case of field theory, Srinivasan has pioneered application of ex-
otic probabilities to quantum field theory by calculating the Lamb shift in a
quaternionic version of canonical quantization. His results agree with QED
without any renormalization procedure. In addition to Srinivasan’s approach
it is clear in a very simple sense that electrons must emit photons because
the vector potential remains unknown even when the electromagnetic field
has been measured. Even in the case of a single electron, one must therefore
sum over the various possible gauge equivalent vector potentials. One has no
choice but to predict that an electron will have various possible motions and
these will be correlated with various possible vector potentials. It is reason-
able to expect that this simple effect should fit naturally in the framework
of a complete field theory. This, however, has not been done. Also, similar
considerations hold for the metric tensor and weighted sums over various
possible metric tensors must similarly be finite. Does this then mean that
one could calculate gravitational radiation?

Exotic probability theories are much more restrictive than quantum me-
chanics in the sense that the form of the vector potential and metric tensor
is already determined by the choice of state space and probability. Since the
choice of probability seems to be fixed by spin, one apparently only has the
state space left to explain things like other gauge theories besides QED. Can
Yang-Mills theories be formulated as exotic probability theories, and, if so,
with what state space?

Other questions arise if we sketch the general procedure for finding a PDE
for wave functions. The basic theory here is formulated with a state space X
only assumed to be a measure space. Assuming that X also has a topology,
consider a point x in an open set O ⊂ X. One assumes that a time difference
t′ − t can be chosen such that (xt → x′

t′) is negligible for x′ outside of O.
In addition, we suppose that O can be chosen such that (xt → x′

t′) can be
approximated by a function of only x′ − x and t′ − t. Given this, the path
integral within O collapses to a convolution and this can be inverted with a
Fourier transform resulting in a kernel depending only on the lowest moments
of the time derivative of (xt → x′

t′) as in section 9. Another way to think
about this is to consider the ring of P–valued functions on O with pointwise
addition and convolution as multiplication. In this case, we assume that
these rings have units Kt in a “Dirac sequence” sense[32] limt→0 Kt ∗ f = f
and lims,t→0 Ks ∗ Kt = Ks+t. This can be solved by considering a slight
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generalization of the standard quadratic form: a function q : V → P where
q(x+y)−q(x)−q(y) = b(x, y) for a symmetric bilinear b : V ×V → P . Then
Kt : x 7→ eq(x−a)/t/It, a ∈ V , It =

∫

O
eq(x)/t provides solutions. As mentioned

in section 9, this raises the question of why only certain of these Kt are seen in
nature. There is also the question of what exactly must be assumed about X
since, besides a topology, we only seem to need subtraction of nearby points
in O. For instance, it is perhaps interesting to remove geometry entirely by
allowing any multiplication on Hom(O, P ) which forms a ring with pointwise
addition and has a unit in the Dirac sequence sense.

Although Srinivasan has worked in field theory directly, simple multi–
particle systems have not been done with exotic probabilities. In particular,
what is the relationship between spin and statistics for exotic probabilities?
This seems likely to be interestingly different than in standard field theory.

Although the time parameter in exotics seems essential once the state
space axioms are introduced, this does not mean that exotics are nonrela-
tivistic. “Time” in the complex R4 theory, for example, can be interpreted
as the proper time or path length parameter. One suspects however, that
“time” is really the order in which one discovers facts about the system
rather than anything more intrinsic. In this case, one might expect that
automorphisms of the time parameter should result in equivalent theories
with modified moments of (xt → x′

t′). Is this correct and, if so, what are the
consequences of invariance under time automorphisms?

The fact that the vector potential appears as the first moment of the time
derivative of (xt → x′

t′) suggests that Maxwell’s equations should describe
complex or quaternionic vector potentials. Are there complex and quater-
nionic versions of Maxwell’s equations and, if so, are it’s classical predictions
correct?

The whole area of “Bayesian Inference” in ordinary probability theory is
based on the idea that one can used Bayes theorem (which also follows in
exotics) to systematically improve probabilities based on “prior” knowledge.
It is clear that the same thing should be possible with exotic probabilities.
In the standard Bayesian case, this is often based on the maximum entropy
principle. The issue, then, is how to do Bayesian inference and is there an
analogue of maximum entropy?
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12 Summary

Exotic probability theories as described here appear to be the only general-
ization of probability theory consistent with the basic Bayesian framework.
In addition to standard probability theory, we find that three exotic copies
are possible where probabilities are real, complex or quaternion valued re-
spectively. Although the exotic theories are substantially simpler that quan-
tum mechanics both conceptually and mathematically, they nevertheless give
the same predictions as standard quantum theory. These theories constrain
physical theories in the same sense that Cox’s original arguments constrain
possible alternatives to standard probability theory. The implications of this
beyond basic quantum theory are mostly unexplored, but we have attempted
to at least formulate some fundamental open questions where new insights
are needed.
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